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Abstract

A large class of distributed applications follow an
event-driven or reactive paradigm. Such applications
can benefit from Mobile Agent technology by making it
easy to add re-configurablity, extensibility, and failure
resilience features at an application level. We present
the design of a Middleware for building reactive, exten-
sible, reconfigurable distributed systems, based upon an
abstraction we call Mobile Streams. Using our system,
a distributed, event-driven application can be scripted
from a single point of control and dynamically extended
and re-configured while it is in execution. Our system
is suitable for building a wide variety of applications;
for example, distributed test, conferencing and control-
oriented applications. We illustrate the use of our system
by presenting example applications.
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Current trends indicate that in the future, the archi-
tecture of distributed systems will be radically different
from those of today. The forces propelling such changes
include: (1) the movement towards making embed-
ded processing, sensors and actuators first order compo-
nents of the networked computational infrastructure; (2)
the need to accommodate environments in which semi-
autonomous systems and devices organize into cooper-
ating systems and (3) the need to enable distributed con-
trol systems to dynamically adapt and optimize their be-
havior in reaction to changing environments and physi-
cal composition of the system components.

Consider a Middleware framework that allows the
components of a distributed application to be moved
around from machine to machine dynamically (i.e. topo-
logical re-configuration) without stopping. There are
classes of applications where a dynamic re-configuration

of the distributed system can significantly enhance sys-
tem performance. For example, envision a control ap-
plication consisting of reactive distributed components.
Such an application implements a distributed on-line al-
gorithm, adjusting system parameters in response to sen-
sor inputs. In order to achieve good control performance
and achieve system stability, it is necessary to situate the
control logic close to the process being controlled. How-
ever, it may not be possible to know a-priori what con-
stitutes a good placement. The distributed control appli-
cation can react to changes in the environment and re-
sources by dynamic placement and movement of con-
trol elements. Such re-configurations may be made from
outside of the distributed system by a global observa-
tion of the environment (global reconfiguration) or from
within the application itself (autonomous reconfigura-
tion).

Next, consider a capability that permits dynamic up-
dating of functionality (code) in a distributed applica-
tion. Certain classes of long-running distributed appli-
cations can benefit from such a capability. For exam-
ple, consider a distributed system where nodes (sites)
may be dynamically added and removed. In reaction to
this, the code controlling a distributed process running
on these nodes may need to be updated. However, it may
not be necessary or allowable to stop the system in or-
der to achieve this. In this situation, having the ability to
dynamically update functionality without shutting down
the system becomes a requirement.

The examples above describe some of the considera-
tions that motivate the design of the Middleware frame-
work that we present in this paper. Our approach is based
upon an abstraction we call Mobile Streams (MStreams).
The significant attributes of our approach include:

1. Dynamic re-configurablity and extensibility:
Our Middleware allows for multiple points of con-
trol; that is, the distributed application can be re-
configured and extended by initiating actions from
any of the participating sites. Such applications
may be dynamically extended and reconfigured
without stopping the system or flushing messages.

2. Support for low-latency, distributed reconfig-
uration: We use distributed lazy caching and
multi-threading to reduce the cost of topological
reconfiguration.
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3. Peer-to-peer messaging: In order for a dis-
tributed application to continue to operate while
it is being re-configured, we need a peer-to-peer
communication protocol that preserves ordering
while these actions are taking place. We have
developed an efficient peer-to-peer asynchronous
communication protocol that preserves ordering
and reliable delivery in the presence of fail-
ures and dynamic reconfiguration. Ordered, reli-
able messages greatly simplify the design of dis-
tributed applications.

The rest of this paper is organized as follows: Sec-
tion 2 presents the MStreams programming model and
system architecture and presents an introductory exam-
ple. Section 3 gives a brief overview of AGNI, our
prototype implementation of MStreams Middleware and
presents some preliminary performance results. Sec-
tion 4 presents some more comprehensive applications
that we have built on our system. In Section 5 we com-
pare and contrast our work with those of others. In Sec-
tion 6 we conclude and present our future plans for this
project.
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A Mobile Stream (MStream) is a named communica-
tion end-point in a distributed system that can be moved
from machine to machine while a distributed computa-
tion is in progress and while maintaining a pre-defined
ordering guarantee of message consumption with re-
spect to the order in which messages are sent to it.

An MStream has a globally unique name. We re-
fer to any processor that supports an MStream execu-
tion environment as a Site. The closest analogy to an
MStream is a mobile active mailbox. As in a mailbox, an
MStream has a globally unique name. MStreams provide
a FIFO ordering guarantee, ensuring that messages are
consumed at the MStream in the same order as they are
sent to it. Usually mailboxes are stationary. MStreams,
on the other hand, have the ability to move from Site
to Site dynamically. Usually mailboxes are passive. In
contrast, message arrival at an MStream potentially trig-
gers the concurrent execution of message consumption
event handlers ( Append Handlers ) registered with the
MStream, which can process the message and, in turn,
send (append) messages to other MStreams.

A distributed system consists of one or more Sites. A
collection of Sites participating a distributed application
is called a Session. Each Session has a distinguished,
trusted, reliable Site called a Session Leader. Each Site

is assigned a Location Identifier that uniquely identifies
it within a given Session. New Sites may be added and
removed from the Session at any time. An MStream
may be located on, or moved to any Site in the Session
that allows it to reside there. MStreams may be opened
like sockets and messages (appended) to them. Multi-
ple Event Handlers (Handlers) may be dynamically at-
tached, to and detached from, an MStream. Handlers
are invoked on discrete changes in system state such as
message delivery (append), MStream relocations, new
Handler attachments new Site additions and Site fail-
ures. We refer to these discrete changes in system state
as Events. Handlers are attached by Agents which pro-
vide an execution environment and thread for the Han-
dlers that they attach. (i.e. an Agent specifies a collec-
tion of Handlers that that all use the same thread of ex-
ecution and interpreter.) Logically, the system is struc-
tured as shown in Figure 1.

Handlers can communicate with each other by ap-
pending messages to MStreams. These messages are de-
livered asynchronously to the registered Append Han-
dlers in the same order that they were issued & . A mes-
sage is delivered at an MStream when the Append Han-
dlers of the MStream has been activated for execution as
a result of the message. A message is consumed when all
the Append handlers of the MStream that are activated
as a result of its delivery have completed execution. By
asynchronous delivery we mean that the sender does not
block until the message has been consumed in order to
continue its execution.

Our architectural goal is separation of logical design
of a distributed application and physical placement of
its components. A distributed application is constructed
by first specifying the communication end-points as
MStreams and then attaching Agents to those end-points,
that in turn attach Handlers for specific Events. A given
MStream may have multiple Agents and each Agent may
register Handlers for different Events, but each Agent
may have only one Handler for a given Event. When
an Event occurs, the appropriate Handlers in each Agent
are concurrently and independently invoked with appro-
priate arguments. Handlers are typically registered on
Agent initialization and may be dynamically changed
during execution.

An application built using our Middleware, may be
thought of as consisting of two distinct parts - an active
part and a reactive part. The reactive part consists of
Streams and Handlers. The active part or Shell lives out-

'
Synchronous delivery of messages is supported as an op-

tion but asynchronous delivery is expected to be the common
case.
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Figure 1. Logical organization of the Sys-
tem. A Session consists of multiple partic-
ipating Sites. Each Site can house multiple
MStreams. Each MStream can have mul-
tiple Agents that can register Handlers for
different Events. MStreams can move from
Site to Site. When an MStream moves, all
its registered handlers move with it.

side the Middleware and drives it. A Shell may connect
to the Middleware and issue requests and may exit at any
time. The reactive part is persistent.

Figure 2 shows an example script that instantiates
a simple distributed system that resides at Sites 1 and
2. A message is sent to the stream called foo by
the stream append command issued via the external
Shell (#a in Figure 2) . The MStream called foo receives
the message ”Hello world” and sends it to the MStream
called bar (#b in Figure 2) which outputs the message via
its handler and then moves MStream bar to Site 1 (#c in
Figure 2). The arrival handlers run when the MStream
bar arrives at Site 1, printing the string ”I am at 1” to the
console at Site 1 (#d in Figure 2).

In Figure 2 the script labelled ”External Input” in is
the Shell and MStreams and their registered handlers are
the reactive parts.

2.1 Dynamic Extension and Re-configuration

An application built on our Middleware may be dy-
namically extended and re-configured in several ways
while it is in execution (i.e., while there are pending
un-delivered messages). First, an Agent can dynami-

Site 1 Site 2

foo
Append 

Handler

Append

Handler

stream_open foo
External Input

stream_append foo"Hello world" ;#a

a

b

register_agent bar {} {

              puts $argv

          }
            on_stream_relocation {

                   set my_loc [stream_location]
                   puts "I am at $my_loc" ;#d

           }
}

            

bar

stream_move bar 2

      stream_open bar
       on_stream_append {
            stream_append bar $argv ;#b

        }
}

         on_stream_append {

              stream_relocate 1 ;#c

stream_move foo 1

stream_create bar
stream_create foo

register_agent foo {} {

Figure 2. A simple auto-reconfiguring reac-
tive system scripted from a single point of
control.

cally change the handlers it has registered for a given
Event. Second, new Agents may be added and existing
Agents removed for an existing MStream. Third, new
MStreams may be added and removed. Fourth, new Sites
may be added and removed, and finally, MStreams may
be moved dynamically from Site to Site.

When an MStream moves from one Site to another, it
(logically) moves the code of all of the Agents attached
to it to the new Site along with whatever state they have
placed in their briefcase structures. We say an Agent
”visits” a Site when its MStream visits the Site. When
an Agent first visits a Site, its initialization code executes
there and when an Agent is killed, its (optional) Finaliza-
tion Handler runs at each location that has been visited
by the Agent. Agent state (consisting of global state vari-
ables and code) is replicated at each site that it visits until
the Agent is destroyed. On Agent destruction, the Han-
dlers that it has registered are de-registered, and the in-
terpreter and state variables are freed at each Site that it
has visited. We assume that Sites may fail or disconnect
during execution. Site failure does not imply destruction
of the MStreams that reside there. Failure processing is
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described in Section 2.4.
The Agent’s briefcase specifies a consistency require-

ment for moves. When an Agent moves from Site to Site
only the elements in the briefcase are copied from the
source execution environment to the target. The remain-
der of the global state remains unaffected (and cached)
at the source site of the move. On successful comple-
tion of a move, the Arrival Handlers of the MStream are
invoked at the new Site where the MStream has moved.

Handlers may move the MStream to which they are
attached and also may move other MStreams around as
well as create and destroy MStreams. Handlers may also
exit - destroying the Agent in which they are housed and
may also destroy other Agents . Such actions may also be
initiated from an external Shell. Re-configuration may
be contained by using appropriate policy handlers, as de-
scribed in section 2.2.

All changes in the configuration of an MStream such
as MStream movement, new Agent addition and dele-
tion, and MStream destruction are deferred until the time
when no Handlers of the MStream are executing. We
call this the Atomic Handler Execution Model . Message
delivery order is preserved despite dynamic reconfigura-
tion, allowing both the sender and receiver to be in mo-
tion while asynchronous messages are pending delivery.

2.2 Restricting Extension and Re-configuration

Applications built using Mobile Streams can be ex-
tended from multiple points of control; any handler or
Shell (see Section 2) that has acquired an open MStream
handle, can attempt to re-configure or extend the reac-
tive part of the system and these actions can occur con-
currently. While this adds great flexibility, it also raises
several security and stability issues. We provide a means
of restricting system reconfiguration and extension using
control Events that can invoke policy Handlers. These
policy Handlers may be registered only by privileged
Agents as described below. We follow a discretionary
control philosophy by providing just the mechanism and
leaving the policy up to individual applications. Con-
trols may be placed via policy Handlers at a session-
wide level, site-wide level and at the level of individual
MStreams for various security-relevant Events.

The Session Leader MStream is a trusted, station-
ary MStream that resides in the distinguished Session
Leader Site (see section 2) and may have a single station-
ary Agent that can register Handlers for Session Control
Events. Using this mechanism, controls may be placed
on various system-wide events such as new MStream
creation, MStream destruction, new Agent creation and
destruction and MStream motion.

Each Site has a single stationary Site Controller
MStream with a stationary Agent resident at that site that
can register Handlers for Site-specific Events such as
MStream open, MStream arrival, new Agent registration
and Shell connection and disconnection Events.

Before an MStream is accepted at a given Site, the
MStream arrival policy Handler responsible for accept-
ing or denying the MStream entry can query various
properties about its identity and registered handlers. The
Site Controller may also specify a code fragments to
be executed in the context of any new Agent that gets
created or initialized at its Site. Site-specific code can
thus be made to intervene in security-sensitive opera-
tions such as file opens. This provides a means of ”sand-
boxing” Handlers that execute at a Site. Using the mech-
anisms offered by safe TCL, for example, a function
may be constructed that intervenes in sensitive opera-
tions such as channel opens.

At the time of its creation, each MStream may spec-
ify a privileged Stream Controller Agent. The Stream
Controller remains associated with the MStream for its
lifetime and may not be destroyed once it is created
without destroying the MStream itself. The Stream
Controller can register privileged Handlers for various
Events. Handlers registered by other (non Stream Con-
troller) Agents are considered ”non-privileged”. The set
of Events for which a non-privileged Agent may reg-
ister Handlers is a proper sub-set of the set of Events
for which the Stream Controller may register Handlers.
The Stream Controller can place policy Handlers that
can intervene in various sensitive operations such as new
Agent registrations, MStream opens and MStream move-
ment, in addition to being able to register Handlers for
message consumption (append) Events, relocations and
failures. There can be at most one privileged Handler
for a given Event. For any Event for which both non-
privileged Handlers and a privileged Handler exists for
a a given MStream , the privileged Handler gets control
first and has to activate the non-privileged handlers for
execution. Hence, for a given Event, the execution of a
non-privileged Handler may be controlled by the corre-
sponding privileged Handler. This mechanism is useful
in constructing distributed debuggers and for enforcing
MStream-specific policies.

As an example of how these security mechanisms op-
erate, Figure 3 shows the different policy checks that
can be made during MStream Open. A stream open re-
quest may originate from a Handler or external Shell
(#a in the figure). If the caller does not already have
an open handle, the request is forwarded to the Session
Leader where it is vetted by the Session Leader reg-
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Figure 3. Checking of actions may be made
at several levels - Session-
wide, Site-specific and Stream-specific by
attaching policy Handlers that intervene in
these actions.

istered on stream open policy Handler. If this check
passes, the request is forwarded to the Site where the
MStream resides where the request is vetted by the Site
Controller registered on stream open policy Handler.
If this check passes, the request is forwarded to the
on stream open Handler registered by the Stream Con-
troller where it may again be accepted or denied. The
request may be denied at any level and failures may oc-
cur while the request is being processed. If a failure or
denial should occur at any step of the request processing,
an error is returned to the Handler or Shell that initiated
the request.

The mechanisms described above permit us to build
highly flexible and extensible distributed reactive sys-
tems that are able to extend and re-configure themselves,
and also to place constraints on how the system can be
re-configured and extended. Our overall approach for
imposing these restrictions differs from other architec-
tures [5, 9, 13] while building on some ideas adopted
by those systems. For example, the Site Controller ap-
proach and sandboxing is followed by other systems.
We have added two innovations. First, we have built
mechanisms to place session-wide controls over exten-
sion and reconfiguration via the Session Leader. Sec-
ond, the MStream itself is regarded as an extensible en-
tity to which Agents can be attached and detached. It can
carry its own policy Handlers to allow or disallow such
actions, as determined by its Stream Controller Agent.

2.3 Message Delivery

Within our Middleware framework, point-to-point
messages are delivered using an in-order sender-reliable

delivery scheme built on top of UDP. All messages are
consumed in the order they are issued by the sender de-
spite failures and reconfigurations. These ordering and
delivery guarantees make it simpler to design distributed
systems.

In our scheme, the sender of the message is responsi-
ble for re-transmitting the message on timeout. We use
a sliding-window acknowledgement mechanism similar
to those employed by TCP. The sending Site buffers the
message and computes a smoothed estimate of the ex-
pected round-trip time for the acknowledgment to arrive
from the receiver. If the acknowledgment does not arrive
in the expected time, the sender re-transmits the mes-
sage. The sender keeps a window of unacknowledged
messages and controls flow by dynamically adjusting
the width of this window depending upon whether an
ACK was received in the expected time or not. Thus far,
our description is similar to the mechanisms employed
by TCP. We have implemented our own protocol, rather
than just use TCP, because TCP does not address certain
conditions such as failures above the transport level and
dynamic movement of the communicating end-points.

As previously described, an application can be dy-
namically reconfigured at any time with both the sender
and receiver moving. When movement of an MStream
occurs, a Location Manager is informed of the new Site
location where the MStream will reside. This informa-
tion needs to be propagated to each Handler or Shell that
has opened the MStream.

When the target of an append moves, messages that
have not been consumed have to be delivered to the
MStream at the new Site. There are two design op-
tions in dealing with this problem - either forward un-
consumed messages from the old Site to the new Site
or re-deliver from the sender to the new Site. Forward-
ing messages has some negative implications for relia-
bility. If the Site from which the MStream is migrating
dies before buffered messages have been forwarded to
the new Site, these messages will be lost. Hence, we
opted for a sender-initiated retransmission scheme. The
sender buffers the message until it receives notification
that the handler has run and the message has been con-
sumed, re-transmitting the message on time-out.

When an MStream moves it takes various state infor-
mation along with it. Clearly, there is an implicit move-
ment of handler code and Agent execution state (via the
briefcase), but in addition, the MStream takes a state vec-
tor of sequence numbers. There is a slot in this vector
for each ”alive” MStream that the MStream in motion
has sent messages to or received messages from. Each
slot contains a sent-received pair of integers indicating
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the next sequence number to be sent or received from a
given MStream. This allows the messaging code to de-
termine how to stamp the next outgoing message or what
sequence number should be consumed next from a given
sending MStream.

2.4 Handling Failures

A failure occurs when the Site where the MStream re-
sides fails or disconnects from the Session Leader. Each
MStream is assigned a reliable Failure Manager Site.
When a such a failure occurs each of the MStreams lo-
cated at the Site that has failed are implicitly relocated
to its Failure Manager Site where its Failure Handlers
are invoked. Failures may occur and be handled at any
time - including during system configuration and recon-
figuration. Pending messages are delivered in order,
despite failures. A message is considered ”consumed”
only after all of the append handlers execute at the tar-
get MStream for that message. (If none exist the mes-
sage is discarded at the recipient). If the Site housing an
MStream should fail or disconnect while a message is be-
ing consumed or while there are messages that have been
buffered and not yet delivered, re-delivery is attempted
at the MStream Failure Manager. To ensure in-order
delivery in the presence of failures, the message is dis-
carded at the sender only after the Append Handlers at
the receiver have completed execution and the ACK for
the message has been received by the sender. This is dif-
ferent from TCP where the receiver ACKs the message
immediately after reception (and not after consumption
as we require). After a failure has occurred at the site
where an MStream resides, a failure recovery protocol
is executed that re-synchronizes sequence numbers be-
tween communicating MStreams that involve the failed
MStream. Each of the potential senders is queried to ob-
tain the next expected sequence number. FIFO ordering
can be thus be preserved despite the failure.

( ��"*)����+",�+�-�. /����
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We have implemented the Mobile Streams model in
a toolkit we call AGNI 1 . AGNI is a multi-threaded
TCL extension that uses the thread-safety features of
TCL 8.1 and consists of roughly 23,000 lines of C++
code. Our system currently runs on Solaris, Linux
and Windows NT and may be downloaded from from
http://www.antd.nist.gov/itg/agni/. In this section, we

2
”AGents at NIst” (also Sanskrit for fire)

give highlights of the implementation some initial per-
formance results. Experimental results were obtained on
150 MHz Ultra SPARC workstations using an unloaded
10 MBPS Ethernet connecting the workstations and sim-
ulating packet loss by dropping packets at the receiver.

Each workstation that wishes to participate in the dis-
tributed system runs a copy of an Agent Daemon. A
distinguished Agent Daemon houses the Session Leader
and is in charge of accepting or rejecting new Agent Dae-
mons. This Daemon also serves as a Location Man-
ager and Failure Manager for all MStreams in the Ses-
sion. Each Agent Daemon has a unique identifier that it
obtains from the Session Leader. Each Agent Daemon
maintains a connection with the Session Leader Agent
Daemon. Conceptually, the arrangement is as shown in
the figure 4.

Each Agent has a TCL interpreter and thread of
execution that is used by the Handlers that it regis-
ters. These resources are created for an Agent at a
Site on its the first visit to the Site and remains allo-
cated until the Agent (or the MStream to which it is at-
tached) is destroyed. When a new Agent is added to an
MStream, its code is propagated and initialized on the
first move of the Agent to a previously unvisited Site,
and remains cached there until it is destroyed. Provided
an MStream has visited a Site previously, and no new
Agents have been attached since its last visit, MStream
movement simply consists of moving the state informa-
tion in the briefcase (see Section 2) of each Agent of
the MStream to the new Site and concurrently invoking
each on stream arrival Handler. For a single handler
with a minimal on stream relocation handler and brief-
case, moving round robin over 4 locations, our experi-
ments showed a move latency of 38.5 milliseconds av-
eraged over 1000 hops.

Except for the case when the MStream is co-located
with the Site from where the message originates, all con-
trol Events destined for an MStream (e.g. creation, re-
location, new agent attachment) are delivered through
the Session Leader Agent Daemon via the TCP connec-
tion that each Agent Daemon maintains with it. The
Session Leader Agent Daemon also acts as a Location
Manager, keeping track of where each MStream is lo-
cated and is hence able to re-direct control message to
the location of the MStream. Sending all control Events
through the Session Leader is a simple means of achiev-
ing a global ordering on control messages. The negative
aspect of this design is that the Session Leader has the
potential of becoming a bottleneck. However, we expect
the number of control messages to be much smaller than
the number of data messages (appends) processed by the
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TCP Connection for control messages

Agent Daemon
Agent Daemon Agent Daemon

SESSION LEADER

Figure 4. Each Site runs an Agent Daemon
that is connected to the Session Leader.
The Agent Daemon is Multi-threaded with
one thread per agent. The Session Leader
maintains location and cache information.

MStream and hence do not consider this a serious lim-
itation at present. In our future work, we plan to alle-
viate this problem by replication of the Session Leader.
The Session Leader Daemon also manages the tracking
information for the code and state cache described pre-
viously and is charge of propagating code to previously
unvisited locations. As all code is registered at the Ses-
sion Leader and propagated from there, this simplifies
the trust model to pair-wise relationships between each
site and the Session Leader. provided all parties trust the
Session Leader.

Appended data messages are delivered to the destina-
tion MStream directly without going through the Session
Leader. Thus the Session Leader is not a bottleneck for
data message delivery.

We performed limited experiments to test the effi-
ciency of our message delivery protocols and system ar-
chitecture. Figure 5 shows the results of one such exper-
iment. In this experiment, there is one sender MStream
and one receiver MStream. The receiver and sender both
move once every K messages. The Append Handler at
the receiver does little other than reposition the receiver.
We assumed a simple congestion model – messages are
dropped at the reciever randomly according to a uniform
probability distribution. We measured the average time
for message consumption as a function of message drop
percentages for different values of K. As previously de-
scribed, our protocol maintains a pipeline of messages
between sender and receiver, similar to TCP. On each
move, the message pipeline between sender and receiver
is broken, and in the limiting case of one move per mes-
sage, there is at least a round-trip latency and the over-
head of communication with the Session Leader for each
message consumed, thereby resulting is degraded per-
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Figure 5. Performance
of point-to-point messages for moving end-
points for different message drop percent-
ages. Both sender and receiver are in mo-
tion with the sender sending messages to
the receiver while in motion.

formance. We defer a thorough performance analysis
and description of the implementation to a more detailed
report.
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Several prototype applications have been built using
AGNI. In each case, we adopted a problem-driven ap-
proach in mapping AGNI capabilities to prototype solu-
tions. For example, we started with the assumption that
we would use mobility only to the extent that it simpli-
fied the application design in some fashion, rather than
adopt the approach that mobility is a feature whose util-
ity needed to be demonstrated. The remainder of this
section details the design of two prototype applications.

4.1 Synchronous Collaboration

Synchronous (real-time) collaboration is a mode of
computer supported collaborative work where the par-
ticipants send messages to each other in real-time in or-
der to share a workspace. Common applications that fall
under this category include shared white-boards and net-
work chat.

In this section, we present a simple self-reconfiguring
network chat application that illustrates how topologi-
cal reconfiguration may be used to minimize latency in
such applications. Consider a network chat application
where each participant in the chat can send messages to
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all other participants. It may be desired, in such an appli-
cation, that all participants see an evolving conversation
in the same global order. That is, the distributed system
requires a globally consistent message consumption or-
dering.

To simplify our presentation, we assume that there
are three fixed participants in the conversation labeled
1,2 and 3 (see Figure 6(a)). Each participant, hosts an
MStream 687 on her workstation 9 . The purpose of this
MStream is to consume messages and display output.
Global ordering is achieved by each participant send-
ing messages to a central MStream named M which re-
broadcasts messages to all participants.

In order to guarantee global ordering, all participants
must send the messages to M and only consume the mes-
sages that are re-broadcast from M. If M were at a fixed
Site, the latency involved in this operation could become
irritating for an interactive user. We solve this problem
by employing mobility to periodically re-position M to
a Site that is favorable to the most interactive user. The
Agent of M has a vector counter : with an entry :;7 for
each user 9 . When a message is received from a user 9 ,
the Append Handler of M increments the count :;7 asso-
ciated with 9 . It periodically determines the Site from
which the most messages originated and moves itself
over to that Site, zeroing out the vector counter in doing
so.

Figure 6(B) shows the Agent code
for the central dispatcher M. The Agent for M specifies
an on stream append and an on stream relocation han-
dler and initialization code. The initialization code ini-
tializes a counter array (#1) and opens each of the dis-
play streams (#2). When a message is delivered to the
MStream M the dispatchers on stream append handler
runs. It responds by noting the location from which the
message originated (#3) and re-dispatching the message
to each of the display MStreams (#4). Every 50 mes-
sages, it re-positions itself to the Site from where the
most messages originated (#5), clearing its counters on
arrival at the new Site (#6).

The remaining pieces of the application consist of the
display handler and the input handlers. The input han-
dler (Figure 6.D ) runs in an extended TCL shell. It reads
input from the keyboard and sends it the the central dis-
patcher (#2). The Display Handler code is shown in Fig-
ure 6(C). It consists of an MStream (#1) with an Append
Handler that simply echoes any message appended to it
(#3).

Our performance metric in this application is the ex-
pected round-trip time for the ”most interactive” user.
The effectiveness of this scheme in reducing latency for
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Figure 7. Avg. round-trip time for mes-
sages for the adaptive chat example for dif-
ferent dispatcher repositioning intervals.
There are 3 participants. Talker role prop-
agates round-robin. See Section 4.1.

this user will depend upon several factors - in particular
upon network latencies and the expected asymmetry in
the frequency of messages sent to the dispatcher by the
participants and the expected cost of re-configuration.

We performed a limited experiment to test the effi-
ciency of this scheme using AGNI. In our test, we as-
sumed that there were three participants. At any given
time, there is an interactive participant (Talker) who gen-
erates messages at a frequency of 1 message every 100
milliseconds. The other users (Lurkers) generate mes-
sages at a rate of one message every 400 milliseconds.
Each participant assumes the role of Talker in round-
robin fashion. We simulated a network packet loss rate
of 5% by dropping packets at the receiver.

Figure 7 shows the average round trip time for the
messages generated by the Talker and the Lurkers. The
X axis shows the number of messages between moves
of the central dispatcher. Clearly, for the Talker, it is
most advantageous to quickly sense where she is lo-
cated and move the dispatcher to her workstation. For
Lurkers, this temporarily results in increased message
latency. As the frequency of moves increases, the Talker
sees improved performance. Our message rate is not
high enough to entirely fill the pipeline and hence, in this
case, pipeline breakage effects are not immediately ap-
parent and the Lurker’s performance remains fairly con-
stant for different dispatcher repositioning frequencies.
A more detailed set of performance results using such
an adaptive algorithm under a system that we had devel-
oped earlier is presented in [12].

Based on this principle, we have developed a toolkit

8



S1

S2

S3

M

register_agent $mydisplay "" {
           on_stream_append {

           }
}

set dispatcher [stream_open M]
while { 1 } {

set my_id [my_id]                                            ;#1

    set input [gets]                                         ;#1
    stream_append $dispatcher $input     ;#2

set consumers [list S1 S2 S3]
register_agent M $consumers {
      set  consumers $argv
      foreach consumer $consumers {

      }
      set count 0
      on _stream_append  {
               incr count 

               incr counter($loc)
               foreach stream $consumers {

               }
                if { $count == 50 } {             
                   # find_max finds the max counter value
                   set newloc [find_max counter]
                   stream_relocate [stream_location $newloc]   ;#5
                }
         }

                foreach consumer $consumers

                }
                set count 0
          }
}

          on_stream_relocation {

               set loc [stream_sender_name]                          ;#3

                   stream_append $stream $argv                      ;#4

             stream_open $consumer                                     ;#2
             set counter($consumer)   0                                ;#1

set mydisplay [stream_create S$my_id ]     ;#2

stream_create M

                     set counter($consumer) 0                                ;#6  
C. Display handler

                  puts stdout $argv                              ;#3    

A. Logical Structure of Chat Application

D. Input handler B.   Mobile Dispatcher

Figure 6. A simple auto-reconfiguring distributed chat that uses mobility to minimize la-
tency for the interactive user. See Section 4.1.

called TKShare for sharing unmodified TK applications
using the ”What You See is What I See” (WYSIWIS)
paradigm. Each user runs a separate copy of the appli-
cation. What each user inputs to her GUI must be re-
played on every other user’s copy of the application so
that the WYSIWIS guarantee may be preserved. We call
these actions GUI events. The application may be sen-
sitive to the order of input actions and hence, the input
GUI events must be replayed in the same order on each
user’s copy of the application.

TkShare works by re-binding each TK widget based
on the approach of TkReplay [4]. The re-binding code
visits all the widgets in the widget hierarchy and finds
the tags bound to it. Then it finds each GUI event call-
back that is bound to the tag and re-binds it. For each
binding, the original script is saved in a table and re-
placed by a binding that sends the action to a central GUI
event re-dispatcher MStream using an append in much

the same way as the network chat example, bypassing
the binding script that would normally get called. The
re-dispatcher MStream resends the GUI event to each
participant by appending to a stationary MStream lo-
cated on each participant’s machine. On reception of the
append, at this stationary MStream, the original binding
script is invoked.

Following the same strategy as the network chat ex-
ample, the central mobile dispatcher periodically re-
positions itself to minimize latency for the currently
most interactive user. This example points the way to
how mobility can be used to achieve multi-party low
sender-latency totally ordered reliable multicast service
without the need for global locking.
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4.2 Distributed Test Scripting

Web-based distributed testing has many applications
such as protocol inter-operability testing and peer-to-
peer performance testing. In this application, we use
AGNI as a runtime Middleware for a high-level dis-
tributed test scripting application. We motivate this ap-
plication with an example.

To test the throughput over a wide-area connection,
a reasonable test sequence might consist of the follow-
ing actions: (1) Set up a receiver process on a site; (2)
Set up a sender process on another (geographically sep-
arated) site; (3) Connect from the sender to the receiver
process; (4) Transfer an amount of data from the sender
to the receiver; (5) Report the timing back to some cen-
tral test collection Site.

If we were working in a closed system where fail-
ures are not possible and all resources are free to be used
by the test, such a test scenario would be trivial to con-
struct. However, consider performing the same test over
the public Internet. Here, we wish to sample the band-
width between widely-dispersed users who agree to run
the test. Clearly, for the simple test described above, at
least two users need to be present at any time and both
must agree to exchange data. Following are are design
requirements for the test system:

Test Coordination: In general, there is a pre-
condition that needs to be established before the test can
begin its execution, and in more complicated scenarios
some intermediate coordination between test sites that
needs to be done as the test progresses.

Test Structure and Deployment: The logical struc-
ture of the distributed test application may be known a
priori but the physical structure depends upon the IP ad-
dresses of the physical machines involved. We thus need
a means of dynamically mapping a logical distributed
application structure to physical machines.

Failure Handling: User sites may disconnect be-
fore the test completes. In this case the test results may
not be considered accurate. We need a means to stop the
test and log the failure under these circumstances. Alter-
natively, if the test is a long-running test of a distributed
system, we may wish to reconfigure the test dynamically
while it is in execution.

Security: Users may not be trusted, and further, may
not trust each other. The test system must thus provide
users the ability to authenticate each other and to specify
local policies that protect their own resources.

Actions taken by each of the participating worksta-
tions is triggered by discrete changes in state that drive
the distributed system into new states, thus making the
test driver event-driven.

While the requirements of such a system may be met
by directly scripting in AGNI, users may wish to use
higher level constructs to describe the parallelism and
concurrency of such a test. We implemented a Simple
Task Graph Language (STGL) to meet the requirements
above. STGL has very simple constructs to describe
concurrency, parallelism and distribution. For example,
a simple test specification in STGL may look as speci-
fied in Figure 8(A).

The TCL code
in Figure 8(A) is largely self-explanatory. A distributed
task is specified as a set of subtasks with dependencies.
Each subtask section can have a list of inputs and is de-
marcated by %

�
and % � . Tasks can communicate with

each other via a mailbox structure that is implemented in
AGNI. A task may place intermediate results in a mail-
box where other tasks can pick them up. A task blocks if
it attempts to read a mailbox which is empty and is un-
blocked when a result arrives.

There is a distinguished mailbox for the result of the
task graph which is set when the task graph completes
execution or fails to which a result can be sent via the
set result function. In the example above, the function
ask user permission puts a pop-up in front of the partic-
ipant and asks permission to run the test on her machine.
start receiver sets up the receiver and start sender sets
up a process that does an active connection to the re-
ceiver end and sends the number of data exchanges re-
quired. The result is reported by posting to a collector
mailbox. Finally, we clean up all the intermediate struc-
tures needed to manage the test.

The MStreams mechanisms presented in the previous
sections are used to instantiate and run the distributed
test-scripting application as described in the next sec-
tion.

4.2.1 The runtime system for STGL

The basic template for each task is instantiated with
two MStreams — one to enable the task and another to
which the task posts a result with the body of the task ap-
pearing as an append Handler. When a message arrives
at the MStream the append handler is executed and the
data is consumed. After the task has executed, the run-
time system posts a message to the enabling MStream of
all dependent tasks.

The Mobile Streams are placed at the appropriate
Sites to run the task graph. Appends to the Streams are
transitions that result in execution of the action parts.

Figure 8(B) depicts the AGNI intermediate code that
is generated to implement the task graph in 8(A). Each
distinct task is executed through the action subroutine
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set place0 0
set place1 1
set place2 2
set npings 100

Taskgraph mytask -task {
    sequential begin
    # sequential section.
        concurrent begin
        # concurrent section.
            at $place1 inputs: $npings %{
                # Ask user permission to execute test 
                set result [ask_user_permission ]
                if { $result == "no" } {
                    set_result "fail"
                }
            %}
            at $place2 inputs: $npings %{
                set result ask_user_permission
                if { $result == "no" } {
                    set_result "fail"
                    return
                }
                start_receiver $npings
            %}
        end

        at $place1 inputs: $place2 $npings%{
            set ip_addr [get_peer_addr $place2]
            if { [connect_to_receiver $ip_addr] == 0 } {
                 set_result "fail"
            }
            set start_time [clock_clicks]
            send_data $npings
            set delta expr [ [clock_clicks] - $start_time ]
            set_result "pass $delta"
        %}

        concurrent begin
            at $place1 %{
                  puts "Thank you for participating"
            %}
            at $place2 %{
                  puts "Thank you for participating"
            %}
        end
    end
}

set result [mytask.run]
if { [lindex $result 0] == "fail" } {
    puts "Test failed or aborted"
} else {
    set ping_time [lindex $result 1]
    puts stdout "Result = $ping_time"
}
$temp_streams [mytask set temps]
foreach i [$temp_streams] {
    stream_destroy $i
}

action 1 {} {           
    set result [ask_user_permission]
    if { $result == "no" } {
        set_result "fail"
    }
} Start2 t0 

action 2 {npings 100} { 
    set result [ask_user_permission]
    if { $result == "no" } {
        set_result "fail"
       return
     }
     start_receiver $npings
} Start2 t0 

action 1 {place1 1 npings 100} { 
    set ip_addr [get_peer_address $place1]
    if { [connect_to_receiver $place1] == 0 } {
         set_result "fail"
         return
    }
    set start_time [clock_clicks]
    send_data $npings
    set elapsed_time [expr [clock_clicks] - $start_time]
    set_result "pass $elapsed_time"
} t0 t1 

action 1 {} {                   
     puts "Thanks for participating"
} t1 Done3 

action 2 {} { 
     puts "Thanks for participating"
} t1 Done3 

(A) Test Script Specification

(B) Generated Intermediate Code

proc action { loc input action pre post } {
  set astream [stream_create /webtest -temp]
  stream_move $astream $loc
  register_agent $astream  \
    [list $loc $input $action $post] {
    extract_args {loc input action post} $argv
    on_stream_append {
        if {[catch {eval $action} result] == 1} {
           report_error $result
        }else {
            stream_append $post "ACTION_DONE"
        }
     }
     on_stream_failure {
        stream_append "COLLECTOR" "FAIL"
     }
   }
   # Create and attach pre/postcondition handlers
   stream_create /webtest/$pre
   attach_precondition_handlers
   stream_create /webtest/$post
   attach_postcondition_handlers
}
    

      

(C) Partial listing of "action" function

Figure 8. A Simple Task Graph Language (STGL) for test scripting. Illustrates the use of a
mobile-stream based run-time system for high-level test scripting. The script is specified
as concurrent and sequential sections as shown in (A) and compiles to the intermediate
code representation in (B). Mobility is used for instantiation of the system. Error recovery
is effected by on failure processing.

(see figure 8(C)) that takes 5 arguments. The first is
a Site location identifier, the second some initialization
code, the third is the body of the subtask, the fourth
an MStream (called the trigger MStream) which triggers
task execution an MStream name to which an append
message will be sent after the task has completed exe-
cution. Note that action creates temporary MStreams for

the transitions as stream names are not relevant so long
as they are distinct.

The run method of the Taskgraph (invoked in Fig-
ure 8(A)) instantiates the system by compiling the task
graph and generating the code shown in Figure 8(B)
which is then sourced. The action subroutine creates the
appropriate MStreams, moves them to the target Site and
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registers agents that in turn register append and failure
handlers.

The on stream append handler
for each trigger MStream is the subtask code supplied to
the action subroutine. Our failure assumptions are sim-
ple – on failure we just want to abort the test and note the
failure. Hence, each MStream has the same on failure
handler that simply Appends a ”FAIL” message to the
COLLECTOR MStream .

The COLLECTOR is a stationary MStream residing
in the reliable Session Leader Site that has a handler that
cleans up all intermediate streams and aborts the test.

In order to have the system auto instantiate, we de-
fine an on new peer Handler in the Session Leader. The
on new peer Handler is invoked for authorizing new
connections. We use it to set up the test system by mov-
ing the intermediate MStreams to the participating work-
stations when they connect to the server.

= >?�+�� /���+�A@B
��DC

In contrast to other research in Mobile Agents, our
approach has been to treat mobility and Mobile Agent
technology as an enhancement to distributed scripting
rather than as a means of supporting disconnected op-
erations. Consequently, we have concentrated on typ-
ical distributed systems issues such as location track-
ing, message passing and failure handling. This distin-
guishes and separates our work from the other work in
this area.

In this work, we proposed direct communication
(reliable message passing) for communication between
Mobile Agents. In contrast to mobile TCP [1], what
we are really trying to implement is communication
”stack” mobility; whereas, in mobile TCP, the entire
machine (including its communication stack and all its
state) moves from cell to cell.

In our system on stream append Handlers ( analo-
gous to ”Agents” in other systems ) pass one-way mes-
sages to each other reliably ( via MStreams ) rather than
meeting to exchange messages, or using RPC-like mech-
anisms. Cabri et. al. [2] state that direct co-ordination
or message passing between Agents is not advisable for
the following reasons: (1) the communicating Agents
need to know about each others existence (2) routing
schemes may be complex and result in residual infor-
mation at the visited nodes and (3) if agents need to
communicate frequently they should be co-located any-
way. They suggest black-boarding style of communica-
tion for Mobile Agents. They also note that direct mes-
sage passing has the advantage of being efficient and

light-weight. We concur with their concerns for the case
of free-roaming, disconnected agents without any point
of control. However, our system is oriented towards
building re-configurable distributed applications where
the logical structure of the application is known a-priori
with the Session Leader having overall knowledge of
the location of each MStream , thereby alleviating con-
cern (1). Second, our communication protocol relies on
sender initiated re-transmission, rather than forwarding,
thereby eliminating the concern over residual informa-
tion. All the necessary state information is restricted to
the Session Leader and the sender. Third, our system
model and message passing mechanisms do not preclude
co-locating agents that communicate frequently - as il-
lustrated by the auto-reconfiguring chat example. The
application can use the same message passing primitives
regardless of the position of the target MStream with
which it is attempting to communicate. Finally, we note
that a black-boarding scheme can be built on top of the
mechanisms that we provide using synchronous (round-
trip) Append messages and MStream blocking that are
not described in this paper for reasons of brevity.

Our framework and toolkit is related to several other
systems that support mobility. Systems such as Agent
Tcl [6] and ARA [10] support a generalized mobility
model where migration is allowed at arbitrary points in
execution of the mobile code. Previously, we had devel-
oped a system called Sumatra that supports unrestricted
mobility for Java applications by modification of the
Java Virtual Machine [12]. Unrestricted mobility makes
support of fault tolerance and reconfiguration harder to
achieve. In contrast, our system restricts mobility and
other state changes to handler boundaries and treats han-
dlers as atomic. By providing such a clean execution
model, we simplify both the system design as well as the
design of applications built on top of our system.

Systems such as Aglets [9], Voy-
ager [3], TACOMA [8] and Mole [13] follow a program-
ming model similar to ours. However, our system dif-
fers from these systems in the following important ways:
(1) Our design philosophy is to incorporate reconfigura-
tion into a distributed system building toolkit rather than
support disconnected operation as the fundamental de-
sign goal, (2) We have incorporated a peer-to-peer re-
liable, resilient message delivery protocol that none of
these other systems offer and (3) We have a means of
restricting system re-configuration and extension using
policy Handlers that separate global (system-wide), and
local concerns.

Dynamic re-configuration of distributed systems has
been considered by Hofmeister and Purtilo [7] using a
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software bus approach. Their system supports dynamic
changes to modules, geometry and structure of a dis-
tributed system. However, failure processing and asyn-
chronous message delivery during reconfiguration is not
considered.

Our work relates to the work in mobile object sys-
tems - notably the Globe system [14]; however, our de-
sign goals are significantly different than those of Globe.
Our proposed system could be used as an underlying in-
frastructure for a distributed mobile object system as our
design is at a lower level than objects. Globe’s location
tracking hierarchy offers great scalability but could re-
sult in higher latency for object location. Our focus is
on providing an infrastructure for distributed control and
hence we envision less stringent need for scalability but
greater emphasis on latency reduction.

Our design is related to the work on the META
toolkit [15]. The key difference is that we incorporate
dynamic reconfiguration. META uses causal communi-
cation primitives offered by ISIS and we do not. How-
ever, it may be noted that with FIFO ordering and Mobile
Streams the same effects can be achieved as with causal
primitives. We keep time-stamp vectors to ensure FIFO
message consumption in the presence of MStream mo-
tion but do not pay the overhead of transmitting entire
timestamp vectors when the streams are not in motion.
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In this paper we have presented the motivation and
design of a Middleware framework that enables the use
of mobile agents to simplify distributed scripting. In par-
ticular we found that restricting reconfiguration and sys-
tem extension to handler boundaries simplifies the im-
plementation of the system while imposing some burden
on the programmer to design the mobile application with
these constraints.

Our plans for extending the Middleware is concen-
trated in two areas. We will incorporate reliable multi-
cast primitives in our system whereby an MStream can
communicate with a group of MStreams. As in the uni-
cast case, both the sender and the recipients can be in
motion while messages are being delivered. Our work
will build on the earlier work in scalable, reliable mul-
ticast (SRM) [11]. Our justification for using a scheme
such as SRM stems from its inherent scalability. Further,
SRM is well suited for small, bursty messages. The mes-
sage traffic in distributed control systems is likely to be
bursty and sporadic.

Second, we intend to make our location tracking
scheme more robust and scalable by using replication

and multicast.
We intend to continue building applications - espe-

cially in the domain of mobile computing and distributed
testing. We are currently building a data-management
application that manages data collection and visualiza-
tion in a distributed, ”collaboratory”.
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